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Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio
aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is
likely to remain so in the future. As such, accurate modeling and prediction of the basic
characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to
ensure compliance with ever more stringent aviation noise regulations.

In this paper, results from a comprehensive study aimed at establishing the utility of current tools
for modeling and predicting fan noise will be summarized. It should be emphasized that these tools
exemplify present state of the practice and embody what is currently used at NASA and Industry for
predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a
set of benchmark fan noise databases obtained for a range of representative fan cycles and operating
conditions. Detailed comparisons between the predicted and measured narrowband spectral and
directivity characteristics of fan nose will be presented in the full paper. General conclusions
regarding the utility of current tools and recommendations for future improvements will also be
given.
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Motivation

O Fan noise is a significant contributor to the noise
signature of a modern turbofan engine, especially
for the emerging ultra high bypass cycle engines.

4 Prediction and mitigation of fan noise depends on
our ability to model accurately fan noise sources.

O Assess the utility of current modeling tools for

predicting fan noise and identify areas of future
research focus in fan noise modeling.
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Approach

[ Select representative fan noise prediction codes
and evaluate their predictive capabilities against a
set of benchmark fan data.

4 Carry out a comprehensive data-theory comparison
to establish the level of fidelity of the codes.
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Codes

O Empirical
» Predict “farfield” fan noise spectra on third-octave basis.

= Model fan as a compact source.

4 Analytical
» Predict narrowband spectra of in-duct fan noise.

= Typically, involve coupling quasi-2D unsteady aerodynamics
with 3D duct acoustics. Idealized description of the blade row,

base flow and incident turbulence.

O Computational (CAA)
= Predict induct/farfield fan tone noise.

= 3D descriptions of the base flow, unsteady perturbations and
blade-row geometry.
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Code Input
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Fan Pressure Ratio
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Test Facility

9’ x 15° Acoustic Wind Tunnel
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Sample Results: Empirical Code

ADP @ Takeoff Condition
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SDT @ Takeoff

Sample Results: Empirical Code

QHSF2 @ Takeoff
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SDT @ Takeoff

Assessment
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»Sample Results: Analytical Code

SDT@ Cutback SDT@ Takeoff
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Assessment

PWL Error (Data - RSI), dB
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Sample Results: CAA Code

ADP @ All Speeds SDT@ All Speeds
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Assessment
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summary

d Completed first detailed assessment of NASA fan
noise prediction codes and established the level of
data-theory discrepancy for empirical, analytical
and computational codes.

4 For the most part, the data-theory discrepancy is
within 4 dB or less.

1 Modeling shortcomings and focus areas for future
research have been identified.
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